Aromatic–Aromatic Interactions Enable α-Helix to β-Sheet Transition of Peptides to Form Supramolecular Hydrogels
نویسندگان
چکیده
Isolated short peptides usually are unable to maintain their original secondary structures due to the lack of the restriction from proteins. Here we show that two complementary pentapeptides from a β-sheet motif of a protein, being connected to an aromatic motif (i.e., pyrene) at their C-terminal, self-assemble to form β-sheet like structures upon mixing. Besides enabling the self-assembly to result in supramolecular hydrogels upon mixing, aromatic-aromatic interactions promote the pentapeptides transform from α-helix to β-sheet conformation. As the first example of using aromatic-aromatic interactions to mimic the conformational restriction in a protein, this work illustrates a bioinspired way to generate peptide nanofibers with predefined secondary structures of the peptides by a rational design using protein structures as the blueprint.
منابع مشابه
Exceptionally small supramolecular hydrogelators based on aromatic–aromatic interactions
We report herein the use of an aromatic-aromatic interaction to produce small molecule hydrogelators that self-assemble in water and form molecular nanofibers in the resulting hydrogels. Among these hydrogelators, a hydrogelator (6) made from a phenylalanine and a cinnamoyl group represents the lowest molecular weight (MW = 295.33 g/mol) peptide-based hydrogelator prepared to date. The supramol...
متن کاملModulating the Nucleated Self-Assembly of Tri-β(3) -Peptides Using Cucurbit[n]urils.
The modulation of the hierarchical nucleated self-assembly of tri-β(3) -peptides has been studied. β(3) -Tyrosine provided a handle to control the assembly process through host-guest interactions with CB[7] and CB[8]. By varying the cavity size from CB[7] to CB[8] distinct phases of assembling tri-β(3) -peptides were arrested. Given the limited size of the CB[7] cavity, only one aromatic β(3) -...
متن کاملAromatic–Aromatic Interactions Enhance Interfiber Contacts for Enzymatic Formation of a Spontaneously Aligned Supramolecular Hydrogel
Anisotropy or alignment is a critical feature of functional soft materials in living organisms, but it remains a challenge for spontaneously generating anisotropic gel materials. Here we report a molecular design that increases intermolecular aromatic-aromatic interactions of hydrogelators during enzymatic hydrogelation for spontaneously forming an anisotropic hydrogel. This process, relying on...
متن کاملSupramolecular hydrogels based on short peptides linked with conformational switch.
Short peptides appropriately linked with an azobenzene conformational switch were found to be motif and pH dependant supramolecular hydrogelators. The hydrogelation properties of the short peptides linked with the conformational switch were studied in detail with respect to dependence on amino acid residue, pH and salt effect. The presence of amino acids with aromatic side chains such as Phe an...
متن کاملThe conjugation of nonsteroidal anti-inflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels
Here we report supramolecular hydrogelators made of nonsteroidal anti-inflammatory drugs (NSAID) and small peptides. The covalent linkage of Phe-Phe and NSAIDs results in conjugates that self-assemble in water to form molecular nanofibers as the matrices of hydrogels. When the NSAID is naproxen (1), the resultant hydrogelator 1a forms a hydrogel at a critical concentration (cgc) of 0.2 wt % at ...
متن کامل